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We define generalized Pareto curves as the curve of inverted Pareto coefficients b(p), where b(p) is the ratio
between average income above rank p and the p-th quantile Q(p) (i.e.,b(p) = E[X| X > Q(p)]/0(p)).
We use them to characterize income distributions. We develop a method to flexibly recover a continu-
ous distribution based on tabulated income data as is generally available from tax authorities, which
produces smooth and realistic shapes of generalized Pareto curves. Using detailed tabulations from
quasi-exhaustive tax data, we show the precision of our method. It gives better results than the most
commonly used interpolation techniques for the top half of the distribution.
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1. INTRODUCTION

It has long been known that the upper tail of the distribution of income and
wealth can be approximated by a Pareto distribution, or power law (Pareto, 1896).
This fact has been widely used in the empirical literature on inequality to over-
come certain limitations of the data. In particular, Pareto interpolation methods
have been used by Kuznets (1953), Atkinson and Harrison (1978), Piketty (2001,
2003), Piketty and Saez (2003) and the subsequent literature exploiting histori-
cal tax tabulations to construct long-run series on income and wealth inequality.
The widespread applicability of this functional form is often justified using mod-
els where income and wealth evolve according to random multiplicative shocks
(Champernowne, 1953; Simon, 1955; Wold and Whittle, 1957). Recent contribu-
tions have shown how such models can account for both the levels and the changes
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in inequality (Nirei, 2009; Benhabib et al., 2011; Piketty and Zucman, 2015; Jones
and Kim, 2018; Jones, 2015; Benhabib and Bisin, 2016; Gabaix et al., 2016).

However, although the Pareto approximation is acceptable for some purposes,
it is not entirely correct, not even at the top. As a result, empirical methods that
strictly rely on it can miss important features of the distribution (Atkinson, 2017;
Jenkins, 2017). If we want to better exploit the data at our disposal, and also to bet-
ter understand the economic mechanisms giving rise to the observed distributions
of income and wealth, we need to move beyond standard Pareto distributions.

In this article, we develop the flexible notion of generalized Pareto curve to
characterize and estimate income and wealth distributions. A generalized Pareto
curve is defined as the curve of inverted Pareto coefficients b(p), where 0 < p < 1
is the (normalized) rank, and b(p) is the ratio between average income or wealth
above rank p and the p-th quantile Q(p) (i.e., b(p) = E[X|X > Q(p)]1/Q(p)). If
the tail follows a standard Pareto distribution, the coefficient h(p) is constant. For
example, if b(p) = 2 at the top of the wealth distribution, then the average wealth of
individuals above €1 million is €2 million, the average wealth of individuals above
€10 million is €20 million, and so on. In practice, we find that b(p) does vary within
the upper tail of observed income and wealth distributions (including within the
top 10 percent or the top 1 percent), but that the curves b(p) are relatively similar
(typically U-shaped).

Generalized Pareto curves are a particularly useful tool to describe distribu-
tions with a power-law tail. Looking at them reveals significant deviations of real
distribution of income and wealth from strict Pareto behavior, even at the very top.
We exploit this framework to develop an improved methodological approach for
the estimation of income and wealth distributions using tax data, which is often
available solely in the form of tabulations with a finite number of inverted Pareto
coefficients by, ..., bx and thresholds ¢, ..., gx observed for ranks py,...,px. We
call it generalized Pareto interpolation. Existing methods typically rely on diverse
Paretian assumptions (or even less realistic ones) that, by construction, blur or
even erase deviations from the standard Pareto distribution. We show that con-
sidering how the Pareto coefficient b(p) varies can dramatically improve the way
we produce statistics on income and wealth inequality, especially for the top and
with few data points. Using quasi-exhaustive (i.e., including the full population,
at least at the top) annual micro files of income tax returns available in the US
and France over the 1962-2014 period (a time of rapid and large transformation
of the distribution of income, particularly in the US), we show the precision of
the method. That is, based on the information for a small number of ranks (e.g.,
p =10 percent, p, = 50 percent, p; =90 percent, and p, = 99 percent), we can
recover the top half of the distribution with remarkable precision. The method
also gives reasonably good results for the bottom (between p = 10 percent and p =
50 percent) and generates a consistent and smooth distribution with a continuous
density. In fact, we find that the precision of the method is such that it is often pref-
erable to use tabulations based on exhaustive data rather than microdata from a
non-exhaustive subsample of the population, even for subsamples considered very
large by statistical standards. For example, a subsample of 100000 observations
can typically lead to a mean relative error of about 3 percent on the top 5 percent
share, whereas a tabulation based on exhaustive data that includes the percentile
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ranks p = 10 percent, 50 percent, 90 percent, and 99 percent gives a mean relative
error of less than 0.5 percent. For the top 0.1 percent share, the same error can
reach 20 percent with the same subsample, whereas the same tabulation yields an
error below 4 percent.

We believe that the methodology developed in this article can help research-
ers avoid excessive reliance on restrictive assumptions when using tabulated data,
which is still commonplace in some areas of research. To that end, we developed
an R (R Core Team, 2016) package, named gpinter, that implements the meth-
ods described in this article and make them easily available to researchers. We also
provide a web interface built on top of this package (Chang et al., 2017), available
at http://wid.world/gpinter, to estimate and manipulate distributions of income
and wealth on the basis of simple tabulated data files (such as those provided by
tax administrations and statistical institutes) and generalized Pareto interpolation
methods. These tools have successfully been used to estimate series of the income
distribution in the Middle-East (Alvaredo et al., 2019), Poland (Bukowski and
Novokmet, 2017), Brazil (Morgan, 2017), India (Chancel and Piketty, 2019), Russia
(Novokmet et al., 2018), Ivory Coast (Czajka, 2017), China (Piketty et al., 2019),
France (Garbinti et al., 2018), and India (Chancel and Piketty, 2019). Furthermore,
we plan to use them to keep expanding the World Inequality Database (wid.world).
However, the method is not limited to the production of specific inequality statis-
tics: it outputs a continuous and consistent distribution which, depending on what
is most practical, can be characterized by its density, its cumulative distribution
function, its quantile function, or its Lorenz curve. As such, it offers readily avail-
able tools for using tabulated data in a variety of contexts (see, e.g., Bierbrauer
et al. (2021) in the field of optimal taxation).

The rest of the article is organized as follows. In Section 2, we provide the for-
mal definition and the key properties of generalized Pareto curves b(p). In Section
3, we present our generalized Pareto interpolation method, which is based on a
transformation of b(p). In Section 4, we test its precision and compare it to other
interpolation methods using individual income data for the US and France cover-
ing the 1962-2014 period. In Section 5, we consider extensions of the framework
that allows us to further discuss the level of precision that we can expect from our
method in comparison to others.

2. GENERALIZED PARETO CURVES
2.1. Definition and Properties

We characterize the distribution of income or wealth by a random variable
X with cumulative distribution function (CDF) F. We assume that X is integra-
ble (i.e., E[ | X|] < +00) and that F is differentiable over a domain D = [a, +oof
or D =R. We denote f the probability density function (PDF) and Q the quan-
tile function. Our definition of the inverted Pareto coefficient follows the one first
given by Fournier (2015).

Definition 1 (Inverted Pareto coefficient)For any income level x > 0, the
inverted Pareto coefficient is b* (x) = E[ X| X > x], or:
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Ff(z) dz.

L 1
br(x) = (I—F(x))xJ

We can express it as a function of the fractile p with p = F(x) and b(p) = b* (x):

b(p) = 10(u) du

TPoe )
(1-p)O(p)

If X follows a Pareto distribution with coefficient @ and lower bound X, so that
F(x)=1-(x/x)% then b(p) = al/(a—1) is constant (a property also known as van
der Wijk’s (1939) law), and the top 100 X (1—p) percent share is an increasing func-
tion of b and is equal to (1 —p)!/%. Otherwise, b(p) will vary. We can view the
inverted Pareto coefficient as an indicator of the tail’s fatness, or similarly an indi-
cator inequality at the top. It also naturally appears in some economic contexts,
such as optimal taxation formulas (Saez, 2001). We favor looking at them as a
function of the fractile p rather than the income x, because it avoids differences
because of scaling, and make them more easily comparable over time and between
countries. We call generalized Pareto curve the function b:p—b(p) defined over [p, 1|
with p = F(x).! (Where the notation [x,y[ means the interval containing all real
numbers ¢ such that x <7 <y.)

Proposition 1 If X satisfies the properties stated above, then b is differentiable and
forallp<pe<11-b(p)+ (1=p)b' (p) <0andb(p)= 1.

The proof of that proposition—as well as all the others in this section—is avail-
able in Section A.3 in appendix. The definition of h(p) directly implies b(p) > 1. The
fact that the quantile function is increasing implies 1 —b(p) + (1 —p)b’ (p) <0.
Conversely, for 0 <p < 1and X > 0, any function b: [p, 1[ — R that satisfies prop-
erty 1 uniquely defines the top (1 — p) fractiles of a distribution with p = F(X).

Proposition 2 If X is defined for x > X by F(X) =p and the generalized Pareto
curve b: [p, 1[ = R, then for p > p, the p-th quantile is:

_(1-p)b(p) |
Q) =X 5 &P <_ B(l ~ub0) d“) |

The coefficient defined in 1 is only one of several “local” notion Pareto coef-
ficients that may be defined using a similar logic. In Appendix A, we discuss other
properties of generalized Pareto curves, how they relate to the theory of power
laws, and the economics models of the distribution of income and wealth.

'We solely consider inverted Pareto coefficient above a strictly positive threshold X > 0, because
they have a singularity at zero and a less clear meaning below that. The threshold must thus correspond
to a percentile above the share of people with negative or zero income, typically at least p = 10
percent.
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Figure 1. Generalized Pareto Curves of DINA Income
Sources: Piketty et al. (2018) (United States), Garbinti et al. (2018) (France). [Colour figure can be
viewed at wileyonlinelibrary.com]

2.2. Pareto Curves in Practice

We now consider a sample (X7, ..., X;,) of niid. realizations of X. We write X,
the r-th order statistic (i.e., the r-th largest value). Let x+— | x| denote the floor func-
tion. The natural estimator of the inverted Pareto coefficient may be written:2

n

1
(= Lmp D X1y 4= (5 11

gn(P) = X(k)~

Figure 1 depicts the empirical Pareto curves for the distribution of
Distributional National Accounts (DINA) income in France and in the US in 1980
and 2010, based on quasi-exhaustive income tax data. The curve has changed a lot
more in the US than in France, which reflects the well-known increase in inequality
that the US has experienced over the period. In 2010, the inverted Pareto coeffi-
cients are much higher in the US than in France, which means that the tail is fatter,
and the income distribution more unequal.

In both countries, b(p) does appear to converge toward a value strictly above
1, which confirms that the distribution of income is an asymptotic power law.
However, the coefficients vary significantly, even within the top decile group, so
that the strict Pareto assumption will miss important patterns in the distribution.
Because b(p) rises within the top 10 percent of the distribution, inequality in both
France and the US is in fact even more skewed toward the very top than what the
standard Pareto model suggests, and the amount by which inverted Pareto coeffi-
cients vary is not negligible. For the US, in 2010, at its lowest point (near p = 80 per-
cent, b(p) is around 2.4. If it were a strict Pareto distribution, it would correspond
to the top 1 percent owning 15 percent of the income. However, the asymptotic
value is closer to 3.3, which would mean a top 1 percent share of 25 percent.

“Note that for (n—1)/n < p < 1, we have /l;n (p) = lregardless of the distribution of X. This speaks
to the impossibility of directly estimating asymptotic quantities from a finite sample. However, with
fiscal data, for which samples are extremely large, we need not be concerned by the problem until ex-
tremely narrow top income groups.
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Although empirical evidence leads us to reject the strict Pareto assumption,
we can notice that the generalized Pareto curves are U-shaped. We observe that
fact for all countries and time periods for which we have sufficient data.

3. GENERALIZED PARETO INTERPOLATION

The tabulations of income or wealth such as those provided by tax
authorities and national statistical institutes typically take the form of K frac-
tiles 0 <p,; <+ <pg <1 of the population, alongside their income quantiles
¢, < --- < gk and the income share of each bracket [p, p,,;] That last element
may take diverse forms (top income shares, bottom income shares, average income
in the brackets, average income above the bracket, etc.), all of which are just dif-
ferent ways of presenting the same information. The interpolation method that we
now present uses the way inverted Pareto coefficients vary smoothly to estimate
a complete distribution based solely on that information: we call it generalized
Pareto interpolation. Note that we assume that we know both the thresholds and
the shares of each bracket. In some cases, only one of these is available. Although
a similar method could be extended to these settings (especially when we know the
shares), we leave this for future research.

The first goal of the method is to be as flexible as we are allowed to be: i.e., we
do not force the estimated distribution into a predetermined shape. We stress that
a fully nonparametric approach is not possible here because of the lack of a suit-
able asymptotic framework.(The number of brackets would have to go to infinity,
which is not a good approximation of real-life settings.) But we can still get a lot
more flexibility than a strict Pareto model by introducing a large enough number
of parameters. The second goal is to generate a solution with desirable proper-
ties. Indeed the interpolation problem is technically ill-posed as it has an infinite
number of candidate solutions. Our method overcomes that issue by looking for a
“regular” curve of Pareto coefficients.

Our method combines three components, which solve different aspects of the
problem. First, we interpolate the generalized Pareto curve in a way that maximizes
its smoothness while satisfying two sets of constraints: those related to the quan-
tiles and those related to the means. Second, we enforce if necessary the constraint
that the quantile function is increasing by finding an admissible solution that is as
close as possible to the original one. Finally, we deal separately with last bracket,
for which the interpolation is not possible because of the lack of an endpoint in
the interval.

For the exposition of the method, we will set aside sampling-related issues and
treat empirical quantities as equivalent to their theoretical counterpart. However,
we come back to that issue in Section 5.

3.1. Interpolation of the Pareto Coefficients

The tabulations let us compute b(p, ), ..., b(px) directly. However, interpolat-
ing the curve b(p) based solely on those points offers no guarantee that the result-
ing function will be consistent with the input data on quantiles. To that end, the

© 2021 The Authors. Review of Income and Wealth published by John Wiley & Sons Ltd on behalf of
International Association for Research in Income and Wealth

268



Review of Income and Wealth, Series 68, Number 1, March 2022

interpolation needs to be constrained. To do so in a computationally efficient and
analytically tractable way, we start from the following function:

VX320  g(x)= —logj L 0(p) dp,

which is essentially a transform of the Lorenz curve L(p):

@(x) = —log((1-L(p))E[X]),

with p =1 —e~*. The value of ¢ at each point x;, = —log(1 — p, ) can therefore be
estimated directly from the data in the tabulation. Moreover:

Vx>0 @' (x)=e?™0(l—e*)=1/b(1 —¢7%),

which means that the generalized Pareto coefficient b(p) is equal to 1/¢’ (x).
Therefore, the value of ¢’ (x;) for k € {1,....K} is also given by the tabulation.

Because of the bijection between (p,b(p),0(p)) and (x,@(x), e’ (x)), the
problem of interpolating b(p) in a way that is consistent with Q(p) is identical to
that of interpolating the function ¢, whose value and first derivative are known at
each point x;.

We assume that we know a set of points { (x4, s, ;). <k < K} that cor-
respond to the values of { (x;, ¢(x;), o’ (x)),1 <k <K}, and we seek a suffi-
ciently smooth function @ such that:

(1) Vke{l,...K} o(xp) =p(x) =y 7' (xp) =0 (x) = 5.

By sufficiently smooth, we mean that ¢ should be at least twice continuously dif-
ferentiable. That requirement is necessary for the estimated Pareto curve (and by
extension the quantile function) to be once continuously differentiable, or, put dif-
ferently, not to exhibit any asperity at the fractiles included in the tabulation.

To get an appropriate function, we rely on quintic splines—i.e., piecewise
polynomials of degree 5 defined over each bracket. The quintic spline is fully deter-
mined by three quantities at each boundary: the value of the polynomial and its
first and second derivatives. The value (x;) and the first derivative (s;) are already
fixed by the problem. The value of the second derivative (a,) is a free parameter to
be set. To pick appropriate values for ay, ..., a;, we follow the usual approach of
imposing additional regularity conditions at the boundaries. We have a system of
K-2 equations, linear in a, ..., a4, defined by:

Vhe (2, K=1} 3" (x) =9, (x;).

Two additional equations are required for that system to have a unique solution.
One solution is to use predetermined values for a¢; and ax (known as the “clamped
spline”). Another, known as the “natural spline,” sets:

A M

@) (x))=0 and B (xg) =0.

Both approaches are equivalent to the minimization of an irregularity criterion
(e.g., Lyche and M@rken, 2002):
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min J ?1{ ?" (x)}?dx
ap,...dg
subject to fixed values for a; and ay (clamped spline) or not (natural spline).

We adopt a hybrid approach, in which «, is determined through (’ﬁ]”/ (x;)=0,
but where a is estimated separately using the two-point finite difference:

Sk — Sk-1

ag = .
B X =
Because the function is close to linear near xy, it yields results that are generally
similar to traditional natural splines. However, that estimation of ¢ (xx) is also
more robust, so we get more satisfactory results when the data exhibit potentially
troublesome features.

Finding the actual value of each parameter amounts to solving a linear system
of equations. We provide the detailed algebraic expressions in Appendix C.

3.2. Enforcing Admissibility Constraints

The interpolation method presented above does not guarantee that the esti-
mated generalized Pareto curve will satisfy property 1—or equivalently that the
quantile will be an increasing function. In most situations that constraint need not
be enforced, because it is not binding: the estimated function spontaneously satis-
fies it. However, it may occasionally not be the case, so that estimates of quantiles
of averages at different points of the distribution may be mutually inconsistent.
To solve that problem, we present an ex post adjustment procedure that constrains
appropriately the interpolated function.

We can express the quantile as a function of ¢:

Vx>0 O(l—e ™) =e""?Mgp/ (x).
Therefore:
V20 Q' (1-e™) =W [o" (x) +¢' (x)(1-0'(x))].
Therefore, the estimated quantile function is increasing if and only if:
@) V20  @(x)=9"(x)+3 (x)(1-9"(x)) 20

The polynomial @ (of degree 8) needs to be positive. There are no simple necessary
and sufficient conditions on the parameters of the spline that can ensure such a
constraint. However, it is possible to derive conditions that are only sufficient, but
general enough to be used in practice. We use conditions based on the Bernstein
representation of polynomials, as derived by Cargo and Shisha (1966):

Theorem 1 (Cargo and Shisha (1966))Let P(x) = ¢y + c;x; + - + ¢, X" be a
polynomial of degree n > 0 with real coefficients. Then:

Vxe[0,1] min b; < P(x) < max b,
o<i<n ' 0<i<n '

where:
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-2()/()

To ensure that the quantile is increasing over [x, X, ] (1 < k < K), it is there-
fore enough to enforce the constraint that b; > 0 for all 0 <7 < 8, where b; is defined
as in Theorem 1 with respect to the polynomial x = ®(x; + x(x;,; — x;) ). Those
nine conditions are all explicit quadratic forms in (¥, Viy1» ks Sga1> ks Ajey1 )> SO WE
can compute them and their derivatives easily.

To proceed, we start from the unconstrained estimate from the previous
section. We set a;, = —s5, (1 —s;,) for each 1 < k < K if a5 + 5, (1 — 5;,) <0, which
ensures that condition (2) is satisfied at least at the interpolation points. Then, over
each segment [x;, X, ], we check whether the condition ®(x) > 0 is satisfied for
X € [xy, X, ] using the Theorem 1, or more directly by calculating the values of ®
over a tight enough grid of [x,, x;, ] If so, we move on to the next segment. If not,
we consider L 2 1 additional points (x/, ..., x; ) such that x; <x" <+ <x] <Xy
and we redefine the function @, over [x;, x;, ] as:

po(x) if x <x<xj
Pr(x) =9 @y(x) if x;<x<x}
p;(x) if x] <x<x4g,

where the ¢ (0 < ¢ < L) are quintic splines such that for all 1 < € < L:

®o(xX%) =Yk ((PS)/(xk) =Sk ((pé)”(xk) =dy
01 (X)) =Dk (@2)/(xk+1) =Sk+1 (@2)//(xk+1) =1
ei(xy) =y (@) (X)) =si (@)'(x) =a

(p;(thH) =y;+1 ((p;),(x:’ﬂ) =SZ;+1 ((p;)”(x;ﬂ) =a;+1

and y7,s7,a; (1 <Z <L) are parameters to be adjusted. In simpler terms, we
divided the original spline into several smaller ones, thus creating additional
parameters that can be adjusted to enforce the constraint. We set the parameters
yz,s;,a; (1 <£ <L) by minimizing the L? norm between the constramed and
the unconstramed estimate, subject to the 9 X (L+1) conditions that b > 0 for all
0<i<8and0<i<L:

min Jk*l{qok(x)—qok(x)}dx st. b/ >0 (0<i<8and0<¢<L),
V.S, ay
1</<L

where the bf are defined as in Theorem 1 for each spline £. The objective function
and the constraints all have explicit analytical expressions, and so does their
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gradients. We solve the problem with standard numerical methods for nonlinear
constrained optimization.>*

3.3. Extrapolation in the Last Bracket

The interpolation procedure only applies to fractiles between p, and py, but
we generally also want an estimate of the distribution outside of this range, espe-
cially for p > pg.> Because there is no direct estimate of the asymptotic Pareto
coefficient lim,_,;b(p), it is not possible to interpolate as we did for the rest of the
distribution: we need to extrapolate it.

The extrapolation in the last bracket should satisfy the constraints imposed by
the tabulation (on the quantile and the mean). In accordance with the principle of
a regular Pareto curve, it should also ensure derivability of the quantile function
at the boundary. To do so, we use the information contained in the four values
(Xg, V> Sk ag ) of the interpolation function at the last point. Therefore, we need
an appropriate functional form for the last bracket with enough degrees of free-
dom to satisfy all the constraints. To that end, we turn to the generalized Pareto
distribution.

Definition 1 (Generalized Pareto distribution)Let 4 € R, 6 € ]0,+oo[, and
& € R. X follows a generalized Pareto distribution if for all x> u (6> 0) or u < x <

p—ol& (£ <0):

X—u

-1/¢
1—<1+§ for £#0

P{X<x}=GPD,,.(x)= c
! 1 —e~(=w/e for £=0.

u is called the location parameter, o the scale parameter, and & the shape
parameter.

The generalized Pareto distribution is a fairly general family that includes as
special cases the strict Pareto distribution (¢ > 0 and p = o/¢), the (shifted) expo-
nential distribution (¢ = 0), and the uniform distribution (¢ = —1). It was popu-
larized as a model of the tail of other distributions in extreme value theory by
Pickands (1975) and Balkema and de Haan (1974), who showed that for a large
class of distributions, the tail converges toward a generalized Pareto distribution.

If X~GPD(u,0.,£), the generalized Pareto curve of X is:

éo
(1-&[o+(1-p)(ut—-o0)]

We will focus on cases where 0 < & < 1, so that the distribution is a power law
at the limit (£ > 0), but its mean remains finite (¢ < 1). When &u = o, the generalized

b(p)=1+

3For example, standard sequential quadratic programming (Kraft, 1994) or augmented Lagrangian
methods (Conn ez al., 1991; Birgin and Martinez, 2008). See NLopt for details and open source imple-
mentations of such algorithms: http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms.

4Adding one point at the middle of the interval is usually enough to enforce the constraint, but
more points may be added if convergence fails.

31t is always possible to set p; = 01if the distribution has a finite lower bound.
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Pareto curve is constant, and the distribution is a strict power law with Pareto coef-
ficient b = 1/(1-¢£). That value also corresponds in all cases to the asymptotic coef-
ficient lim,_,,b(p) = 1/(1 — &). However, there are several ways for the distribution
to converge toward a power law, depending on the sign of ué—oc. When ué—oc > 0,
b(p) converges from below, increasing as p—1, so that the distribution gets more
unequal in higher brackets. Conversely, when ué—o < 0, b(p) converges from above,
and decreases as p—1, so that the distribution is more equal in higher brackets.

The generalized Pareto distribution can match a wide diversity of profiles for
the behavior of b(p), while offering the right number of degrees of freedom for our
purpose. It has been shown to provide a better fit to the top income distribution
than the standard Pareto distribution (Jenkins, 2017; Charpentier and Flachaire,
2019). In the context of our method, however, the value of its parameters is not of
direct interest. In particular, the setting does not allow for a particularly accurate
estimation of the asymptotic Pareto coefficient, and we do not focus on providing
such an estimate. However, we can use it to find a reasonable functional form that
makes an efficient use of the information at our disposal on the mean, the quantile,
and its derivative at the last threshold. The generalized Pareto distribution offers a
way to extrapolate the coefficients b(p) in a way that is consistent with all the input
data and preserves the regularity of the Pareto curve.

We assume that, for p > p, the distribution follows a generalized Pareto dis-
tribution with parameters (u,0,£), which means that for ¢ > g, the CDF is:

F(q) =px+ (1 =pg)GPD,, £ (q).

For the CDF to remain continuous and differentiable, we need p =gg and
o= (1-pg)/F (qx), where F' (qx) comes from the interpolation method of
Section 3.1. Finally, for the Pareto curve to remain continuous, we need b(pg)
equal to 1+o/(u(1—¢€)), which gives the value of &£. That is, if we set the parameters
(u,0,8) equal to:

U= SKexK_yl(
o=(1=pg)(ag+sg(l—sg))e™ %
e=1— _U-pgo

ek —(1—pru’

then the resulting distribution will have a continuously differentiable quantile func-
tion and will match the quantiles and the means in the tabulation.

4. Tests USING INcOME DATA FROM THE US AND FRANCE, 1962-2014

We test the quality of our interpolation method using data for the US (1962,
1954, and 1966-2014) and France (1994-2012). They correspond to cases for which
we have detailed tabulations of the distribution of yearly pretax income based on
quasi-exhaustive individual tax data (Garbinti et al., 2018; Piketty et al., 2018), so
that we can know quantiles or shares exactly.

We call “DINA income” the income concept that we use as our benchmark,
as it was defined and calculated in the context of the DINA project (Alvaredo
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et al., 2020). The income that we consider includes all labor and capital income
received by individuals. It also includes pension and unemployment insurance ben-
efits and removes the corresponding social contributions. On the contrary, it does
not remove income taxes and does not include other benefits (classified as social
assistance benefits, rather than social insurance). These estimates are primarily
based on administrative tax data and also use surveys to account for non-filers
and tax-exempt income. See Piketty et al. (2018) and Garbinti et al. (2018) for a
detailed definition and methodology. The inclusion of tax-exempt income is the
main difference with the concept of “fiscal income” that was originally used in the
top income literature (Atkinson and Piketty, 2007). It avoids having an income
concept that is overly dependent on the local legislation of countries, making esti-
mates more comparable. We also report comparisons using fiscal income directly
in Appendix D. The statistical unit in both cases in the individual adult (age 20 or
more), and income is split equally between adult household members. We compare
the size of the error in generalized Pareto interpolation with alternatives most com-
monly found in the literature.

4.1. Overview of Other Common Interpolation Methods

We compare our interpolation method with the three main interpolation
methods used in the top income literature (Atkinson, 2007). We designed our
method primarily to improve the quality of estimates for the top of the distribu-
tion obtained from tax data, which explains our focus on these methods, and on
the top half of the distribution. However, we also report results for the middle and
the bottom of the distributions, which show that our method also works relatively
well there.

There is a wide range of alternative interpolation approaches that are suited
to various contexts. Some, like Jargowsky and Wheeler (2018), focus on cases
where only the bracket thresholds and population share are available—while we
consider cases in which the mean income in each bracket is also known. Other
approaches seek to directly estimate a parametric model for the whole distribution:
e.g., Villasenor and Arnold (1989) and Kakwani and Podder (1976) fit a paramet-
ric model for Lorenz curves, and Chotikapanich et al. (2012) use the tabulation as
moment conditions to fit a Beta II distribution. Our approach is less parametric
and seeks to reproduce the statistics provided in the tabulation in input perfectly.

In Appendix D, we extend our comparison to some of these methods: one
additional method based on the Pareto distribution method suggested by Cowell
(2000, p. 158) and two methods that are fully parametric (Kakwani and Podder,
1976; Villasenor and Arnold, 1989). The method of Cowell (2000, p. 158) is not
widely used, in part because it does not lead to closed-form analytical expressions.
The methods of Villaseior and Arnold (1989) and Kakwani and Podder (1976)
have been notably used by the World Bank in its PovcalNet database, but are less
directly comparable to ours because they do not focus on the top of the distribu-
tion, and indeed perform relatively poorly in that part of the distribution. Overall,
the generalized Pareto interpolation also compares quite favorably to them, though
its primary strength is for the top of the distribution.
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Method 1: Constant Pareto coefficient

That method was used by Piketty (2001) and Piketty and Saez (2003), and
relies on the property that, for a Pareto distribution, the inverted Pareto coeftfi-
cient b(p) remains constant. We set b(p) = b=E[X|X>q,]/q, for all p>p,.

The p-th quantile becomes ¢ = qk< I=p ) with @ = b/(h—1). By definition,

T-py
E[X]| X > ¢q] = bg, which gives the p-th top average and top share.

Method 2: log-linear interpolation

The log-linear interpolation method was introduced by Pareto (1896), Kuznets
(1953), and Feenberg and Poterba (1993). It uses solely threshold information and
relies on the property of Pareto distributions that log (1—F(x)) = log (¢)—a log (x).
We assume that this relation holds exactly within the bracket [p;, p;,;] and set

—1/ay
_ Jog(( io_gfzfgi)l ;;kl)_p ) The value of the p-th quantile isagaing = g ( 11_;;1 ) ’
and the top averages and top shares can be obtained by integration of the quantile
function. For p > py, we extrapolate using the value ay of the Pareto coefficient in

the last bracket.

a =

Method 3: mean-split histogram

The mean-split histogram uses information on both the means and the thresh-
olds, but uses a very simple functional form, so that the solution can be expressed
analytically. Inside the bracket [g, g, ], the density takes two values:

f(x) = S b g <x<yy
f}:lf I’lksx<Qk+17

where y,, is the mean inside the bracket. This method is a special case of the split-

histogram (Cowell and Mehta, 1982), with the breakpoint parameter inside each
bracket set equal to the mean, which is the most common choice in the literature.®
To meet the requirement on the mean and the thresholds, we set:

(Prv1 = Pi) oy — q)

_ Drr = 21) (g — 1) _
(Grs1 = @) ( Gy = i)

f; - (G — ) Coie — q)

k

The mean-split histogram does not apply beyond the last threshold of the
tabulation.

Comparison

Methods 1 and 2 make a fairly inefficient use of the information included in
the original tabulation: method 1 discards the data on quantiles and averages at the

“That is, as noted by (Cowell and Mehta, 1982), the breakpoint of the interval [ gy, g, ] could be
different from g, but not all values between ¢, and ¢, will work if we want to make sure that f,” > 0
and f,” > 0. The breakpoint ¢* must be between g, and 2u; — g if y; < (q; + qj41) /2, and between
2y — x4 and g, otherwise. Choosing ¢* = u, ensures that the condition is always satisfied.
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higher end of the bracket, whereas method 2 discards the information on averages.
As a consequence, none of these methods can guarantee that the output will be
consistent with the input. Method 3 does offer such a guarantee, but with a fairly
unrealistic functional form: the density of the resulting distribution is piecewise
uniform, exhibiting discontinuities at arbitrary points, as emphasized by Cowell
and Mechta (1982).

Our generalized Pareto interpolation method makes use of all the information
in the tabulation, so that its output is guaranteed to be consistent with its input.
Moreover, contrary to all other methods, it leads a continuous density, hence a
smooth quantile and a smooth Pareto curve. None of the other methods can sat-
isfy this requirement, and their output exhibits stark irregularities at the beginning
and the end of the brackets in the tabulation in input.

Application to France and the US

Using the individual income tax data, we compute our own tabulations in
each year. We include four percentiles in the tabulation: p; = 0.1, p, = 0.5, p; = 0.9,
and p, = 0.99.

We interpolate each of those tabulations with the three methods above, labeled
“M1,” “M2,” and “M3” in what follows. We also interpolate them with our new
generalized Pareto interpolation approach (labeled “M0”). We compare the values
that we get with each method for the top shares and the quantiles at percentiles
30 percent, 75 percent, and 95 percent with the value that we get directly from the
individual data. (We divide all quantiles by the average to get rid of scaling effects
because of inflation and average income growth.) We report the mean relative error
in Table 1:

~

Y=
Vi

last year
|

MRE= ———
number of years Z

>

t=first year

where y is the quantity of interest (income threshold or top share), and 7 is its
estimate using one of the interpolation methods.

The two standard Pareto interpolation methods (M1 and M?2) are the ones
that perform worst. M1 is better at estimating shares, whereas M2 is somewhat
better at estimating quantiles. That shows the importance not to dismiss any infor-
mation included in the tabulation, as exhibited by the good performance of the
mean-split histogram (M3), particularly at the bottom of the distribution.

Our generalized Pareto interpolation method vastly outperforms the standard
Pareto interpolation methods (M1 and M2). It is also better than the mean-split
histogram (M3), except in the bottom of the distribution where both methods
work well (but standard Pareto methods M1 and M2 fail badly).

Figure 2 shows how the use of different interpolation methods affects the esti-
mation of the top 25 percent share and associated income threshold. Although all
methods roughly respect the overall trend, they can miss the level by a significant
margin. The generalized Pareto interpolation estimates the threshold much better
than M1, M2, or M3.
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TABLE 1
MEAN RELATIVE ERROR FOR DIFFERENT INTERPOLATION METHODS

Mean Relative Gap Between Estimated and

Observed Values
MO Ml M2 M3
US (1962-2014) Top 80% share 0.044% 0.54% 7.2% 0.03%
(ref’) (x12) (x164) (x0.7)
Top 70% share 0.059% 2.3% 6.4% 0.054%
(refl) (x38) (x109) (x0.92)
Top 25% share 0.093% 3% 3.8% 0.54%
(ref)) (x32) (x41) (x5.8)
Top 5% share 0.059% 0.84% 4.4% 0.83%
(ref’) (x14) (x76) (x14)
P20/average 1.4% 39% 25% 2.1%
(refl) (x28) (x18) (x1.5)
P30/average 0.43% 55% 29% 1.4%
(ref.) (x126) (x67) (%3.3)
P75/average 0.32% 11% 9.9% 5.8%
(ref)) (x35) (x31) (x18)
P95/average 0.3% 4.4% 3.6% 1.3%
(ref.) (x15) (x12) (x4.5)
France (1994-2012) Top 80% share 0.16% 0.51% 7.3% 0.21%
(ref.) (x3.1) (x45) (x1.3)
Top 70% share 0.24% 2.4% 6.5% 0.21%
(ref.) (x10) (x27) (x0.88)
Top 25% share 0.25% 1.9% 5.8% 0.28%
(ref.) (x7.9) (x24) (x1.1)
Top 5% share 0.29% 0.68% 11% 0.28%
(ref.) (x2.3) (x36) (x0.95)
P20/average 4.9% 29% 19% 4.3%
(ref.) (x5.9) (x4) (x0.87)
P30/average 2.4% 44% 25% 2.4%
(ref.) (x19) (x10) (x1)
P75/average 0.83% 6.1% 4.6% 4.7%
(ref) (x7.4) (%5.6) (x5.7)
P95/average 0.89% 4% 1.9% 2.2%
(refl) (x4.5) (x2.1) (x2.5)

DINA income. Sources: author’s calculation from Piketty ez al. (2018) (US) and Garbinti et al.
(2018) (France). The different interpolation methods are labeled as follows. MO0: generalized Pareto
interpolation. M 1: constant Pareto coefficient. M2: log-linear interpolation. M3: mean-split histogram.
We applied them to a tabulation that includes the percentiles p = 10 percent, p = 50 percent, p = 90 per-
cent, and p = 99 percent. We included the relative increase in the error compared to generalized Pareto
interpolation in parentheses. We report the mean relative error, namely:

V=
Vi

last year

1
number of years

5

t=first year

where y is the quantity of interest (income threshold or top share), and 9 is its estimate using one of the
interpolation methods. We calculated the results over the years 1962, 1964, and 1966-2014 in the US
and years 1994-2012 in France.

For the estimation of the top 25 percent share, M3 performs fairly well, unlike
M1 and M2. To get a more detailed view, we therefore focus on a more recent
period (2000-2014) and display only M0 and M3, as in Figure 3. We can see that
M3 has, in that case, a tendency to overestimate the top 25 percent by a small yet
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Figure 2. P75 Threshold and Top 25 Percent Share in the US (1962-2014),
Sources: author’s computation from Piketty ez al. (2018). MO: generalized Pareto interpolation.
M1: constant Pareto coefficient. M2: log-linear interpolation. M3: mean-split histogram. [Colour

figure can be viewed at wileyonlinelibrary.com]
Notes: Estimated Using All Interpolation Methods and a Tabulation with p = 10 percent, 50

percent, 90 percent, and 99 percent DINA Income
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Figure 3. P75 Threshold and Top 25 Percent Share in the US (2000-2014),
Sources: author’s computation from Piketty ez al. (2018). MO: generalized Pareto interpolation.
M3: mean-split histogram. [Colour figure can be viewed at wileyonlinelibrary.com]
Notes: Estimated Using Interpolation Methods M0 and M3, and a Tabulation with p = 10 Percent,
50 Percent, 90 Percent, and 99 Percent DINA Income

persistent amount. In comparison, M4 produces a curve almost identical to the
real one.

We can also directly compare the generalized Pareto curves generated by each
method, as in Figure 4. Our method, MO, reproduces the inverted Pareto coeffi-
cients b(p) very faithfully, including above the last threshold (see Section 4.2). All
the other methods give much worse results. Method M1 leads to discontinuous
curve, which in fact may not even define a consistent probability distribution. The
M2 method fails to account for the rise of b(p) at the top. Finally, the M3 leads to
an extremely irregular shape because of the use of a piecewise uniform distribution
to approximate power law behavior.
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Figure 4. Generalized Pareto Curves Implied by the Different Interpolation Methods for the US
Distribution of Income in 2010 DINA Income
Sources: author’s computation from Piketty ez al. (2018). M0: generalized Pareto interpolation.
MI: constant Pareto coefficient. M2: log-linear interpolation. M3: mean-split histogram. [Colour
figure can be viewed at wileyonlinelibrary.com]

Overall, the generalized Pareto interpolation method performs well. In most
cases, it gives results that are several times better than methods commonly used in
the literature, and it does so while ensuring a smoothness of the resulting estimate
that no other method can provide. Moreover, it works well for the whole distribu-
tion, not just the top (like M1 and M2) or the bottom (like M3).

4.2. Extrapolation methods

Of the interpolation methods previously described, only M1 and M2 can be
used to extrapolate the tabulation beyond the last threshold. Both assume a stan-
dard Pareto distribution. Method M1 estimates b(p) at the last fractile pg, and
assumes a Pareto law with @ = b(pg)/(b(pg) — 1) after that. Method M2 esti-
mates a Pareto coefficient based on the last two thresholds, so in effect it assumes a
standard Pareto distribution immediately after the second to last threshold.

The assumption that b(p) becomes approximately constant for p close to 1,
however, is not confirmed by the data. Figure 5 shows this for France and the US
in 2010. The profile of h(p) is not constant for p=1. On the contrary, it increases
faster than for the rest of the distribution.

In Section 3.3 we presented an extrapolation method based on the generalized
Pareto distribution that had the advantage of preserving the smoothness of the
Pareto curve, use all the information from the tabulation, and allow for a noncon-
stant profile of generalized Pareto coefficients near the top. As Figure 5 shows, this
method leads to a more realistic shape of the Pareto curve.
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Figure 5. Extrapolation with Generalized Pareto Distribution Fiscal Income
Sources: author’s computation from Piketty ez al. (2018) (for the US) and Garbinti e al. (2018)
(for France). Included points (hollow dots) come from the data but were not used in the estimation,
while included points black dots were.

TABLE 2
MEAN RELATIVE ERROR ON THE ToP 1 PERCENT FOR DIFFERENT EXTRAPOLATION METHODS, KNOWING
THE TopP 10 PERCENT AND THE ToP 5 PERCENT

Mean Relative Gap Between Estimated and

Observed Values

MO Ml M2

US (1962-2014) Top 1% share 0.78% 5.2% 40%
(refl) (x6.7) (%52)

P99/average 1.8% 8.4% 13%
(ref.) (x4.7) (x7.2)

France (1994-2012) Top 1% share 0.44% 2% 11%
(ref’) (x4.6) (x25)

P99/average 0.98% 2.5% 2.4%
(ref) (x2.5) (x2.4)

Fiscal income.

Sources: author’s calculation from Piketty ez al. (2018) (US) and Garbinti et al. (2018) (France).
The different extrapolation methods are labeled as follows. MO: generalized Pareto distribution. M1:
constant Pareto coefficient. M2: log-linear interpolation. We applied them to a tabulation that includes
the percentiles p = 90 percent, and p = 95 percent. We included the relative increase in the error com-
pared to generalized Pareto interpolation in parentheses. We report the mean relative error, namely:

last year |~

Vi =W
Vi

1
number of years

s

r=first year

where y is the quantity of interest (income threshold or top share), and y is its estimate using one of the
interpolation methods. We calculated the results over the years 1962, 1964, and 1966-2014 in the US,
and years 1994-2012 in France.

Table 2 compares the performance of the new method with the other ones, as
we did in the previous section. Here, the tabulation in input includes p = 90 percent
but stops at p = 95 percent, and we seek estimates for p = 99 percent.”$ Method M2

"Here, we use fiscal income instead of DINA income to avoid disturbances created at the top by the
imputation of some sources of income in DINA income.

8We provide in appendix an alternative tabulation that stops at the top 1 percent and where we seek
the top 0.1 percent. The performances of M0 and M1 are closer but M0 remains preferable.
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Figure 6. Comparison of Extrapolation Methods in the US for the Top 1 Percent, Knowing the Top
10 Percent and the Top 5 Percent Fiscal income.
Sources: author’s computation from Piketty ez al. (2018). [Colour figure can be viewed at
wileyonlinelibrary.com]

is the most imprecise. Method M1 works quite well in comparison. However, our
new method MO gives even more precise results. This is because it can correctly
capture the tendency of h(p) to keep on rising at the top of the distribution.

Figure 6 compares the extrapolation methods over time in the US. We can
see M1 overestimates the threshold by about as much as M2 underestimates it,
whereas MO is much closer to reality and makes no systematic error. For the top
share, M1 is much better than M2. However, it slightly underestimates the top
share because it fails to account for the rising profile of inverted Pareto coefficients
at the top, which is why our method MO works even better.

5. PRECISION

We now discuss a few extensions of the framework presented in this article,
which allow us to analyze in greater detail the level of precision one can expect
from the different ways of estimating the distribution of top incomes.

5.1. Estimation of the Error

When attempting to assess the error term associated with an interpolation
method, the main difficulty is that most of the errors are not because of mere sam-
pling variability (although part of it is), which we can assess using standard meth-
ods. It comes mostly from the discrepancy between the functional forms used in the
interpolation and the true form of the distribution. Put differently, it corresponds
to a “model misspecification” error, which is harder to evaluate. However, the gen-
eralized Pareto interpolation method does offer some solutions to that problem.
We can isolate the features of the distribution that determine the error, and based
on that provide approximations of it.

In this section, we remain concerned with the same definition of the error as
in the previous one. Namely, we consider the difference between the estimate of a
quantity by interpolation (e.g., shares or thresholds) and the same quantity defined
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over the true population of interest. This is in contrast with a different notion of
error common in statistics: the difference between an empirical estimate and the
value of an underlying statistical model. If sample size was infinite—so that sam-
pling variability would vanish—both errors would be identical. However, despite
the large samples that characterize tax data, sampling issues cannot be entirely
discarded. Indeed, because income and wealth distributions are fat-tailed, the law
of large numbers may operate very slowly, so that both types of errors remain dif-
ferent even with millions of observations (Taleb and Douady, 2015).

We consider our notion of the error to be more appropriate in the context of the
methods we are studying. Indeed, concerns for the distribution of income and wealth
only arise to the extent that it affects the actual population, not a model of it. Moreover,
this allows us to remain agnostic as to the “true” model for the distribution of income.

To get tractable analytical results, we also focus on the unconstrained interpo-
lation procedure of Section 3.1, and thus leave aside the monotonicity constraint
of the quantile. That has very little impact on the results in practice since the con-
straint is rarely binding, and when it is, the adjustments are small. For example, the
monotonicity constraint is not binding in any of the tabulations interpolated in the
previous section.

Let n be the size of the population (from which the tabulated data come).
Recall that x = — log (1—p). Let e, (x) be the estimation error on ¢, (x), and sim-
ilarly e; (x) the estimation error on @, (x). If we know both those errors, then we
can retrieve the error on any quantity of interest (quantiles, top shares, Pareto coef-
ficients, etc.) by applying the appropriate transforms. Our first result decomposes
the error between two components. Like all the theorems of this section, we give
only the main results. Details and proofs are in Appendix E.

Theorem 3 We can write e,(x) =u(x) +v,(x) and e/ (x) =u' (x) + v/ (x)
where u(x), u’ (x) are deterministic, and v, (x), v (x) are random variables that
converge almost surely to zero when n—+eo.

We call the first terms u(x) and u’ (x) the “misspecification” error. They cor-
respond to the difference between the functional forms that we use in the interpo-
lation, and the true functional forms of the underlying distribution. Even if the
population size was infinite, so that sampling variability was absent, they would
still remain nonzero. We can give the following representation for that error.

Theorem 4 u(x)and u’ (x)can be written as a scalar product between two functions
n.

cand @™

xx0€

H—=(x, )" (1)dt,
lox

u(x) = Jife(x,t)(p’” (t)dt  and u' (x) = J
where &(x,?) is entirely determined by x, ..., Xg.

The function &(x,) is entirely determined by the known values xi, ..., X, so
we can calculate it directly. Its precise definition is given in appendix. The other
function, ", depends on the quantity we are trying to estimate, so we do not know
it exactly. The issue is common in nonparametric statistics and complicates the
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application of the formula.” However, if we look at the value of @ in situations
where we have enough data to estimate it directly, we can still derive good approx-
imations and rules of thumb that apply more generally.

We call v,(x) and v (x) the “sampling error.” Even if the true underlying
distribution matched the functional used for the interpolation, so that there would
be no misspecification error, they would remain nonzero. We can give asymptotic
approximation of their distribution for large n. We do not only cover the finite vari-
ance case (E[ X*] < + ), but also cover the infinite variance case (E[ X?] = + ),
which leads to results that are less standard. Infinite variance is very common when
dealing with distributions of income and wealth.

Theorem 5 v, (x)and v/ (x) converge jointly in distribution at speed 1 /r,;:

. lvn(x)] 2,

v, (x)

If [EJXZ] < 400, then r, = \/ﬁ and £ is a bivariate normal distribution. If
E[X*] = +coand | — F(x) ~ Cx~2, then r, = (n/logn)'/? and £ is a bivariate
normal distribution, If E[X?] = +o0 and 1 — F(x) ~ Cx~* (1 <a <2), then
r,=n""Y%and #=(y,Y,y,Y), where Y follows a maximally skewed stable distri-
bution with stability parameter a.

Again, we provide more detailed expressions of the asymptotic distributions
in Appendix E alongside the proof of the result. More importantly, we also show
that in practice, we always have v,(x) < u(x) and v/ (x) < u’ (x), regardless of
the precise characteristics of the underlying distribution. This means that sampling
variability is negligible compared to the misspecification error. Therefore, we will
from now on assume thate, (x) ~ u(x)and e (x) = u’ (x).

5.2. Optimal Choice of Brackets

How many brackets do we need to achieve a given precision level, and how
should they be placed? Based on Theorem 4, we can answer that question for any
given @ by solving an optimization program. Therefore, if we pick a functional
form for ¢”” which is typical of what we observe, we get the solution of the problem
for the typical income distribution.

We assume that we want our tabulation to span from the 10 percent to the
99.9 percent percentiles, so we set p; =0.1 and pyp =0.999. We pick the median
profile of " estimated over all available years for France and the US (see Figure 7
in appendix). For a given number K of thresholds, and using the derivative-free
Nelder-Mead algorithm, we solve the optimization problem:

min { max [ife(x,t)(p’”(t)dt} st. Py <Py < <Pr_i <P

PaseoPr-1 \ 1€ [x1.Xk ]

For example, the asymptotic mean integrated squared error of a kernel estimator depends on the
second derivative of the density (Scott, 1992, p. 131).
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TABLE 3
OPTIMAL BRACKET CHOICE FOR A TYPICAL DISTRIBUTION OF INCOME

3 Brackets 4 Brackets 5 Brackets 6 Brackets 7 Brackets

Optimal placement of  10.0% 10.0% 10.0% 10.0% 10.0%
thresholds 68.7% 53.4% 43.0% 36.8% 32.6%
95.2% 83.4% 70.4% 60.7% 53.3%

99.9% 97.1% 89.3% 80.2% 71.8%

99.9% 98.0% 93.1% 86.2%

99.9% 98.6% 95.4%

99.9% 98.9%

99.9%

Maximum relative 0.91% 0.32% 0.14% 0.08% 0.05%

error on top shares

where as usual x;, = —log(1 —p;)for 1 <k < K.

Table 3 shows that an important concentration of brackets near the top is desir-
able, but that we also need quite a few to cover the bottom. Half of the brackets should
cover the top 20 percent, most of which should be within just the top 10 percent. The
rest should be used to cover the bottom 80 percent of the distribution. We can also see
that a relatively small number of well-placed brackets can achieve remarkable preci-
sion: only six are necessary to achieve a maximal relative error of less than 0.1 percent.

Davies and Shorrocks (1989) studied a similar question and we can compare
our results to theirs. Unlike this article, they focus on the estimation of a specific
inequality indicator (the Gini coefficient) directly from grouped data, without an
interpolation step. Our approach interpolates the grouped data and then seeks to
minimize the maximum error on top over the whole distribution. Yet both sets of
result provide similar recommendations: grouped data can achieve great accuracy
in measuring inequality, and the optimal grouping somewhat concentrates groups
at the top of the distribution.

5.3. Comparison with Partial Subsamples

We have seen that generalized Pareto interpolation can be quite precise, but
how does it compare to the use of a subsample of individual data? The question
may be of practical interest when researchers have access to both exhaustive data in
tabulated form and a partial sample of individual data. Such a sample could either
be a survey or a subsample of administrative data.

We may address that question using an example and Monte-Carlo simula-
tions. Take the 2010 distribution of DINA income in the US. We can estimate
that distribution and use it to simulate a sample of size N = 10® (the same order of
magnitude as the population of the US).

Then, we create subsamples of size n < N by drawing without replacement from
the large population previously generated.!? In the case of surveys, we ignore nonre-
sponse and no misreporting, a simplification that favors the survey in the comparison.
For each of those subsamples, we estimate the quantiles and top shares at different
points of the distribution, and compare it to the same values in the original sample of
size N. Table 4 shows the results for different values of n. We see that even for large

10This survey design is called simple random sampling.
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TABLE 4
MEAN RELATIVE ERROR USING SUBSAMPLES OF THE FULL POPULATION

Mean Percentage Gap Between Estimated and Observed Values for
a Survey with Simple Random Sampling and Sample Size n

n=10° n=10* n=10° n=10° n=10" n=10°
Top 70% share 0.42 0.20 0.10 0.04 0.01 0.00
Top 50% share 1.26 0.63 0.32 0.13 0.04 0.00
Top 25% share 4.00 2.04 1.05 0.44 0.15 0.00
Top 10% share 9.29 4.80 2.50 1.05 0.35 0.00
Top 5% share 14.32 7.48 3.94 1.65 0.55 0.00
Top 1% share 29.13 16.01 8.57 3.61 1.21 0.00
Top 0.1% share 52.94 35.23 19.91 8.57 2.89 0.00
P30 threshold 4.67 1.44 0.45 0.15 0.04 0.00
P50 threshold 3.29 1.03 0.33 0.10 0.03 0.00
P75 threshold 2.92 0.91 0.31 0.10 0.03 0.00
P90 threshold 3.91 1.21 0.39 0.12 0.04 0.00
P95 threshold 5.86 1.76 0.59 0.18 0.06 0.00
P99 threshold 14.39 4.79 1.42 0.46 0.14 0.00
P99.9 threshold 44.31 16.29 5.47 1.70 0.49 0.00

Original sample of size N = 10% simulated using the distribution of 2010 DINA income in the US.
Source: author’s computations from Piketty et al. (2018).

samples (n = 10°, n = 10%, n = 107), the case for using tabulations of exhaustive data
rather than subsamples to estimates quantities such as the top 1 percent or 0.1 percent
share remains strong. Indeed, even with n = 10 observations, the typical error on the
top 1 percent share is larger than what we get in Table 3, even with few thresholds. In
practice, the thresholds may not be positioned in an optimal way as in Table 3, so may
also want to compare the results with Table 1. The differences in the orders of magni-
tude are large enough, so that the implications of that comparison hold.

6. CONCLUDING COMMENTS

In this article, we introduce the concept of generalized Pareto curve to char-
acterize, visualize, and estimate distributions of income or wealth. Based on quasi-
exhaustive individual tax data, we reveal some stylized facts about the distribution
of income that lets us move beyond the standard Pareto assumption. We find that
although generalized Pareto curves can vary a lot over time and between countries,
they tend to stay U-shaped.

Then we develop a method to interpolate tabulated data on income—as is
typically available from tax authorities and statistical institutes—that can correctly
reproduce the subtleties of generalized Pareto curves. In particular, the method
guarantees the smoothness of the estimated distribution. It works especially well
for the top half of the distribution. We show that method to be several times more
precise than the alternatives most commonly used in the literature. In fact, it can
often be more precise than using non-exhaustive individual data. Moreover, we can
derive formulas for the error term that let us approximately bound the error of our
estimates, and determine the number of optimally placed brackets that is necessary
to achieve a given precision. The method could also be applied to wealth in cases
where data under a similar form are available, which is much rarer.
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We believe that more empirical work—especially a careful use of administra-
tive data sources—is necessary to study those dynamics in a fully satisfying way.
We hope that the interpolation method presented in this article will allow future
researchers make progress in that direction. To that end, we made the methods
presented in this article available as a R package named gpinter, and also in the
form of an online interface that can be used without any installation or knowledge
of any programming language. Both are available at http://wid.world/gpinter.

REFERENCES

Alvaredo, F., L. Assouad, and T. Piketty, “Measuring Inequality in the Middle East 1990-2016: The
World’s Most Unequal Region?,” Review of Income and Wealth, 65(4), 685-711, 2019.

Alvaredo, F., A. B. Atkinson, et al., Distributional National Accounts Guidelines Methods and Concepts
Used in the World Inequality Database. Available at https://wid.world/document/distributional-
national-accounts-guidelines-2020-concepts-and-methods-used-in-the-world-inequality-datab
ase/. 2020.

Atkinson, A. B., “Measuring Top Incomes: Methodological Issues,” Top Incomes over the Twentieth
Century: A Contrast Between Continental European and English-Speaking Countries, Oxford
University Press, Oxford, 2007.

, “Pareto and the Upper Tail of the Income Distribution in the UK: 1799 to the Present,”
Economica, 84(334), 129-156, 2017.

Atkinson, A. B., and A. J. Harrison, Distribution of Personal Wealth in Britain, Cambridge University
Press, Cambridge, 1978.

Atkinson, A. B., and T. Piketty, Top Incomes Over the Tientieth Century: a Contrast Between Continental
European and English-Speaking Countries, Oxford University Press, 2007.

Balkema, A. A., and L. de Haan, “Residual Life Time at Great Age,” Annals of Probability, 2(5), 792—
804, 1974.

Benhabib, J., and A. Bisin, “Skewed Wealth Distributions: Theory and Empirics,” NBER Working
Paper Series, 21924, 37, 2016.

Benhabib, J., A. Bisin, and S. Zhu, “The Distribution of Wealth and Fiscal Policy in Economies With
Finitely Lived Agents,” Econometrica, 79(1), 123-157, 2011.

Bierbrauer, F. J., P. C. Boyer, and A. Peichl, “Politically Feasible Reforms of Nonlinear Tax Systems,”
American Economic Review, 111(1), 153-191, 2021.

Birgin, E. G, and J. M. Martinez, “Improving Ultimate Convergence of an Augmented Lagrangian
Method,” Optimization Methods Software, 23(2), 177-195, 2008.

Bukowski, P, and F. Novokmet, “Inequality in Poland: Estimating the Whole Distribution by g-Percen-
tile, 1983-2015,” WID.world Working Paper Series 2017/21. Available at http://wid.world/wp-conte
nt/uploads/2017/11/Bukowski_Novokmet_ WP_WIDworld_2017_21.pdf, 2017.

Cargo, G. T., and O. Shisha, “The Bernstein Form of a Polynomial,” Journal of Research of the National
Bureau of Standards, 60(B.1), 79-81, 1966.

Champernowne, D. G., “A Model of Income Distribution,” The Economic Journal, 63(250), 318-351, 1953.

Chancel, L., and T. Piketty, “Indian Income Inequality, 1922-2015: From British Raj to Billionaire
Raj?,” Review of Income and Wealth, 65(S1), S33-S62, 2019.

Chang, W. et al., Shiny: Web Application Framework for R. R Package Version 1.0.3, 2017.

Charpentier, A., and E. Flachaire, Pareto Models for Top Incomes. Available at https://sites.google.
com/site/emmanuelflachaire/publications, 2019.

Chotikapanich, D. et al., “Global Income Distributions and Inequality, 1993 and 2000: Incorporating
Country-level Inequality Modeled with Beta Distributions,” Review of Economics and Statistics,
94(1), 52-73, 2012.

Conn, A. R., N. I. M. Gould, and P. L. Toint, “A Globally Convergent Augmented Langrangian
Algorithm for Optimization with General Constraints and Simple Bounds,” SIAM Journal on
Numerical Analysis, 28(2), 545-572, 1991.

Cowell, F. A., Measuring Inequality. LSE Economic Series, Oxford University Press, Oxford, 2000.

Cowell, F. A., and F. Mehta, “The Estimation and Interpolation of Inequality Measures,” Review of
Economic Studies, 49(2), 273-290, 1982.

Czajka, L., “Income Inequality in Cote d’Ivoire: 1985-2014.” WID.world Working Paper 2017/8.
Available at https://wid.world/document/income-inequality-cote-divoire-1985-2014-wid-world-
working-paper-201708/, 2017.

© 2021 The Authors. Review of Income and Wealth published by John Wiley & Sons Ltd on behalf of
International Association for Research in Income and Wealth

286


http://wid.world/gpinter
https://wid.world/document/distributional-national-accounts-guidelines-2020-concepts-and-methods-used-in-the-world-inequality-database/
https://wid.world/document/distributional-national-accounts-guidelines-2020-concepts-and-methods-used-in-the-world-inequality-database/
https://wid.world/document/distributional-national-accounts-guidelines-2020-concepts-and-methods-used-in-the-world-inequality-database/
http://wid.world/wp-content/uploads/2017/11/Bukowski_Novokmet_WP_WIDworld_2017_21.pdf
http://wid.world/wp-content/uploads/2017/11/Bukowski_Novokmet_WP_WIDworld_2017_21.pdf
https://sites.google.com/site/emmanuelflachaire/publications
https://sites.google.com/site/emmanuelflachaire/publications
https://wid.world/document/income-inequality-cote-divoire-1985-2014-wid-world-working-paper-201708/
https://wid.world/document/income-inequality-cote-divoire-1985-2014-wid-world-working-paper-201708/

Review of Income and Wealth, Series 68, Number 1, March 2022

Davies, J. B., and A. F. Shorrocks, “Optimal Grouping of Income and Wealth Data.” Journal of
Econometrics, 42(1), 97-108, 1989.

Feenberg, D. R., J. M. Poterba, “Income inequality and the incomes of very high-income taxpayers:
Evidence from tax returns,” Tax Policy and the Economy, 7, 145-177, 1993.

Fournier, J., “Generalized Pareto Curves: Theory and Application Using Income and Inheritance
Tabulations for France 1901-2012.” MA Thesis. Paris School of Economics, 2015.

Gabaix, X. et al., “The Dynamics of Inequality,” Econometrica, 84(6), 2071-2111, 2016.

Garbinti, B., J. Goupille-Lebret, and T. Piketty, “Income Inequality in France, 1900-2014: Evidence from
Distributional National Accounts (DINA),” Journal of Public Economics, 162(June), 63-77, 2018.

Jargowsky, P. A. and C. A. Wheeler, “Estimating Income Statistics from Grouped Data: Mean-
Constrained Integration over Brackets,” Sociological Methodology, 48(1), 337-374, 2018.

Jenkins, S. P, “Pareto Models, Top Incomes and Recent Trends in UK Income Inequality,” Economica,
84(334), 261-289, 2017.

Jones, C. L., “Pareto and Piketty: The Macroeconomics of Top Income and Wealth Inequality,” Journal
of Economic Perspectives, 29(1), 29-46, 2015.

Jones, C. 1., and J. Kim, “A Schumpeterian Model of Top Income Inequality,” Journal of Political
Economy, 126(5), 1785-1826, 2018.

Kakwani, N. C., and N. Podder, “Efficient Estimation of the Lorenz Curve and Associated Inequality
Measures from Grouped Observations,” Econometrica, 44(3), 630, 1976.

Kraft, D., “Algorithm 733: TOMP-Fortran Modules for Optimal Control Calculations,” ACM
Transactions on Mathematical Software, 20(3), 262-281, 1994.

Kuznets, S., Shares of Upper Income Groups in Income and Savings. National Bureau of Economic
Research, Cambridge MA, 1953.

Lyche, T., and K. M@rken, “Spline Methods,” Available at https://www.uio.no/studier/emner/matnat/
math/MAT4170/v18/pensumliste/splinebook-2018.pdf, 2002.

Morgan, M., “Extreme and Persistent Inequality: New Evidence for Brazil Combining National
Accounts, Surveys and Fiscal Data, 2001-2015,” WID.world Working Paper Series 2017/12.
Available at https://wid.world/document/extreme-persistent-inequality-new-evidence-brazil-combi
ning-national-accounts-surveys-fiscal-data-2001-2015-wid-world-working-paper-201712/, 2017.

Nirei, M., “Pareto Distributions in Economic Growth Models IIR Working Paper 09-05. Available at
http://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/17503/070iirWP09_05.pdf, 2009.

Novokmet, F., T. Piketty, and G. Zucman, “From Soviets to Oligarchs: Inequality and Property in
Russia 1905-2016,” Journal of Economic Inequality, 16(2), 189-223, 2018.

Pareto, V., Cours d’économie Politique. Available at https://www.cairn.info/cours-d-economie-polit
ique-tomes-1-et-2--9782600040143.htm, 1896.

Pickands, J., “Statistical Inference Using Extreme Order Statistics,” Annals of Statistics, 3(1), 119-131,
1975.

Piketty, T., “Income Inequality in France, 1901-1998,” Journal of Political Economy, 111(5), 1004-1042,
2003.

, Les hauts revenus en France au X Xéme siécle, Grasset, Paris, 2001.

Piketty, T., and E. Saez, “Income Inequality in the United States, 1913-1998.,” Quarterly Journal of
Economics, 118(1), 1-39, 2003.

Piketty, T., E. Saez, and G. Zucman, “Distributional National Accounts: Methods and Estimates for
the United States,” Quarterly Journal of Economics, 133(5), 553-609, 2018.

Piketty, T., L. Yang, and G. Zucman, “Capital Accumulation, Private Property, and Rising Inequality
in China, 1978-2015,” American Economic Review, 109(7), 2469-2496, 2019.

Piketty, T., and G. Zucman, “Wealth and Inheritance in the Long Run,” Handbook of Income
Distribution, Vol. 2. Handbook of Income Distribution, Elsevier, Amsterdam, 1303-1368, 2015.

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical
Computing. Vienna, Austria, 2016.

Saez, E., “Using Elasticities to Derive Optimal Income Tax Rates,” Review of Economic Studies, 63(1),
205-229, 2001.

Scott, D. W., Multivariate Density Estimation, John Wiley & Sons, Inc., New York City, 1992.

Simon, H., “On a Class of Skew Distribution Functions,” Biometrika, 42(3-4), 425-440, 1955.

Taleb, N.N.,and R. Douady, “On the Super-additivity and Estimation Biases of Quantile Contributions,”
Physica A Statistical Mechanics and its Applications, 429, 252-260, 2015.

van der Wijk, J., Inkomens- En Vermogensverdeling. Nederlands economisch instituut, De Erven F.
Bohn, Haarlem, 1939.

Villasefior, J. A., and B. C. Arnold, “Elliptical Lorenz Curves,” Journal of Econometrics, 40(2), 327-338,
1989.

Wold, H. O. A., and P. Whittle, “A Model Explaining the Pareto Distribution of Wealth,” Econometrica,
25(4), 591-595, 1957.

© 2021 The Authors. Review of Income and Wealth published by John Wiley & Sons Ltd on behalf of
International Association for Research in Income and Wealth

287


https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://wid.world/document/extreme-persistent-inequality-new-evidence-brazil-combining-national-accounts-surveys-fiscal-data-2001-2015-wid-world-working-paper-201712/
https://wid.world/document/extreme-persistent-inequality-new-evidence-brazil-combining-national-accounts-surveys-fiscal-data-2001-2015-wid-world-working-paper-201712/
http://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/17503/070iirWP09_05.pdf
https://www.cairn.info/cours-d-economie-politique-tomes-1-et-2--9782600040143.htm
https://www.cairn.info/cours-d-economie-politique-tomes-1-et-2--9782600040143.htm

Review of Income and Wealth, Series 68, Number 1, March 2022

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
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